home *** CD-ROM | disk | FTP | other *** search
-
-
-
- ZZZZLLLLAAAARRRR1111VVVV((((3333SSSS)))) ZZZZLLLLAAAARRRR1111VVVV((((3333SSSS))))
-
-
-
- NNNNAAAAMMMMEEEE
- ZLAR1V - compute the (scaled) r-th column of the inverse of the
- sumbmatrix in rows B1 through BN of the tridiagonal matrix L D L^T -
- sigma I
-
- SSSSYYYYNNNNOOOOPPPPSSSSIIIISSSS
- SUBROUTINE ZLAR1V( N, B1, BN, SIGMA, D, L, LD, LLD, GERSCH, Z, ZTZ,
- MINGMA, R, ISUPPZ, WORK )
-
- INTEGER B1, BN, N, R
-
- DOUBLE PRECISION MINGMA, SIGMA, ZTZ
-
- INTEGER ISUPPZ( * )
-
- DOUBLE PRECISION D( * ), GERSCH( * ), L( * ), LD( * ), LLD( *
- ), WORK( * )
-
- COMPLEX*16 Z( * )
-
- IIIIMMMMPPPPLLLLEEEEMMMMEEEENNNNTTTTAAAATTTTIIIIOOOONNNN
- These routines are part of the SCSL Scientific Library and can be loaded
- using either the -lscs or the -lscs_mp option. The -lscs_mp option
- directs the linker to use the multi-processor version of the library.
-
- When linking to SCSL with -lscs or -lscs_mp, the default integer size is
- 4 bytes (32 bits). Another version of SCSL is available in which integers
- are 8 bytes (64 bits). This version allows the user access to larger
- memory sizes and helps when porting legacy Cray codes. It can be loaded
- by using the -lscs_i8 option or the -lscs_i8_mp option. A program may use
- only one of the two versions; 4-byte integer and 8-byte integer library
- calls cannot be mixed.
-
- PPPPUUUURRRRPPPPOOOOSSSSEEEE
- ZLAR1V computes the (scaled) r-th column of the inverse of the sumbmatrix
- in rows B1 through BN of the tridiagonal matrix L D L^T - sigma I. The
- following steps accomplish this computation : (a) Stationary qd
- transform, L D L^T - sigma I = L(+) D(+) L(+)^T, (b) Progressive qd
- transform, L D L^T - sigma I = U(-) D(-) U(-)^T, (c) Computation of the
- diagonal elements of the inverse of
- L D L^T - sigma I by combining the above transforms, and choosing
- r as the index where the diagonal of the inverse is (one of the)
- largest in magnitude.
- (d) Computation of the (scaled) r-th column of the inverse using the
- twisted factorization obtained by combining the top part of the
- the stationary and the bottom part of the progressive transform.
-
-
- AAAARRRRGGGGUUUUMMMMEEEENNNNTTTTSSSS
- N (input) INTEGER
- The order of the matrix L D L^T.
-
-
-
-
- PPPPaaaaggggeeee 1111
-
-
-
-
-
-
- ZZZZLLLLAAAARRRR1111VVVV((((3333SSSS)))) ZZZZLLLLAAAARRRR1111VVVV((((3333SSSS))))
-
-
-
- B1 (input) INTEGER
- First index of the submatrix of L D L^T.
-
- BN (input) INTEGER
- Last index of the submatrix of L D L^T.
-
- SIGMA (input) DOUBLE PRECISION
- The shift. Initially, when R = 0, SIGMA should be a good
- approximation to an eigenvalue of L D L^T.
-
- L (input) DOUBLE PRECISION array, dimension (N-1)
- The (n-1) subdiagonal elements of the unit bidiagonal matrix L,
- in elements 1 to N-1.
-
- D (input) DOUBLE PRECISION array, dimension (N)
- The n diagonal elements of the diagonal matrix D.
-
- LD (input) DOUBLE PRECISION array, dimension (N-1)
- The n-1 elements L(i)*D(i).
-
- LLD (input) DOUBLE PRECISION array, dimension (N-1)
- The n-1 elements L(i)*L(i)*D(i).
-
- GERSCH (input) DOUBLE PRECISION array, dimension (2*N)
- The n Gerschgorin intervals. These are used to restrict the
- initial search for R, when R is input as 0.
-
- Z (output) COMPLEX*16 array, dimension (N)
- The (scaled) r-th column of the inverse. Z(R) is returned to be
- 1.
-
- ZTZ (output) DOUBLE PRECISION
- The square of the norm of Z.
-
- MINGMA (output) DOUBLE PRECISION
- The reciprocal of the largest (in magnitude) diagonal element of
- the inverse of L D L^T - sigma I.
-
- R (input/output) INTEGER
- Initially, R should be input to be 0 and is then output as the
- index where the diagonal element of the inverse is largest in
- magnitude. In later iterations, this same value of R should be
- input.
-
- ISUPPZ (output) INTEGER array, dimension (2)
- The support of the vector in Z, i.e., the vector Z is nonzero
- only in elements ISUPPZ(1) through ISUPPZ( 2 ).
-
- WORK (workspace) DOUBLE PRECISION array, dimension (4*N)
-
-
-
-
-
-
- PPPPaaaaggggeeee 2222
-
-
-
-
-
-
- ZZZZLLLLAAAARRRR1111VVVV((((3333SSSS)))) ZZZZLLLLAAAARRRR1111VVVV((((3333SSSS))))
-
-
-
- FFFFUUUURRRRTTTTHHHHEEEERRRR DDDDEEEETTTTAAAAIIIILLLLSSSS
- Based on contributions by
- Inderjit Dhillon, IBM Almaden, USA
- Osni Marques, LBNL/NERSC, USA
- Ken Stanley, Computer Science Division, University of
- California at Berkeley, USA
-
-
- SSSSEEEEEEEE AAAALLLLSSSSOOOO
- INTRO_LAPACK(3S), INTRO_SCSL(3S)
-
- This man page is available only online.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- PPPPaaaaggggeeee 3333
-
-
-
-